
FortiFix: A Fault Attack Aware Compiler Framework for
Crypto Implementations

KEERTHI K and CHESTER REBEIRO, Indian Institute of Technology Madras, India

Fault attacks are one of the most powerful forms of cryptanalytic attack on embedded systems, that can corrupt
cipher’s operations leading to a breach of confidentiality and integrity. A single precisely injected fault during
the execution of a cipher can be exploited to retrieve the secret key in a few milliseconds. Naïve countermeasures
introduced into implementation can lead to huge overheads, making them unusable in resource-constraint
environments. On the other hand, optimized countermeasures requires significant knowledge, not just about
the attack, but also on the (a) the cryptographic properties of the cipher, (b) the program structure, and (c) the
underlying hardware architecture. This makes the protection against fault attacks tedious and error-prone.

In this paper, we introduce the first automated compiler framework named FortiFix that can detect and patch
fault exploitable regions in a block cipher implementation. The framework has two phases. The pre-compilation
phase identifies regions in the source code of a block cipher that are vulnerable to fault attacks. The second
phase is incorporated as transformation passes in the LLVM compiler to find exploitable instructions, quantify
the impact of a fault on these instructions, and finally insert appropriate countermeasures based on user defined
security requirements. As a proof of concept, we have evaluated two block cipher implementations AES-128
and CLEFIA-128 on three different hardware platforms such as MSP430 (16-bit), ARM (32-bit) and RISCV
(32-bit).

CCS Concepts: • Security and privacy→ Security in hardware; Hardware attacks; Side-channel analysis
and countermeasures.

Additional Key Words and Phrases: Crypto-system, Fault Injection Attacks, Vulnerability Analysis, Counter-
measures, Security aware compilers

ACM Reference Format:
Keerthi K and Chester Rebeiro. xxxx. FortiFix: A Fault Attack Aware Compiler Framework for Crypto
Implementations. ACM Trans. Des. Autom. Electron. Syst. 1, 1 (July xxxx), 18 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 INTRODUCTION

Embedded systems have multiple components working in tandem to control and monitor various
aspects of our day-to-day life, such as healthcare, automotive, and smart homes. The integrity and
confidentiality, within these devices is ensured by the use of crypto-algorithms. Crypto-algorithms,
however, are highly vulnerable to a potent class of physical attacks called fault attacks, where the
attacker disturbs the encryption process by injecting a fault in the device, to glean information about
the secret key [4]. Over the last two decades, fault attacks have been successfully demonstrated in a
variety of ciphers, including the AES [21], PRESENT [3], Simon [22], Speck [12], and CLEFIA [2].

In a fault attack, the attacker injects faults while the target device is operational using glitches
in the voltage or clock source or by using optical or electromagnetic radiation. The faults typically

Authors’ address: Keerthi K, keerthi@cse.iitm.ac.in; Chester Rebeiro, chester@cse.iitm.ac.in, Indian Institute of Technology
Madras, P.O. Chennai, Chennai, Tamil Nadu, India, 600036.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
© xxxx Association for Computing Machinery.
1084-4309/xxxx/7-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article . Publication date: July xxxx.

HTTPS://ORCID.ORG/0000-0001-7391-4450
HTTPS://ORCID.ORG/0000-0001-8063-0026
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0001-7391-4450
https://orcid.org/0000-0001-8063-0026
https://doi.org/XXXXXXX.XXXXXXX


2 Keerthi K and C. Rebeiro

Fault Injection

Cipher

Faulty Ciphertext Secret Key

Online Phase Offline Phase

303F9085B95BE00962933A84767A 

303F9085B95BE00962922095867A 

Fig. 1. Faults injected when a device is operational can modify program state and execution. The offline
phase uses the faulty ciphertext to glean information about the secret key.

Cipher Algorithm

Source Code

Exploitable Operations

Mapping Module

Cipher Analysis

Front End Pass

Fault Evaluation

Fault Exploitability
Quantification

Countermeasure Addition

Back End Pass

Colored
Source Code

Fig. 2. High Level Overview of the FortiFix Compiler Framework

target memory components such as registers, flash memory [8], SRAM [24], and DRAM [17],
corrupting the contents. Alternatively, faults are injected in the processor pipeline, for instance,
causing instructions to be skipped [15]. The injected faults force the device to malfunction and result
in a corrupted output, called the faulty ciphertext as shown in Figure 1. The attacker uses the faulty
and fault-free ciphertext to glean information about the secret key. Powerful fault attacks such as the
Differential Fault Analysis (DFA) [21] and Impossible Differential Fault Analysis (IDFA) [9] utilize
the cipher’s cryptographic properties to relax the precision required in the fault injection and reduce
the number of faults required.
Our Work. In this paper, we present a fault attack aware compiler framework called FortiFix,
that can automatically identity exploitable regions in a block cipher implementation, quantify the
vulnerability based on the underlying hardware, and insert appropriate countermeasures based on the
user’s requirements. Starting with the block cipher algorithm, which is represented in a language
called, Block Cipher Specification Language (BCSL), FortiFix evaluates complex properties of
the cipher, thus supporting sophisticated attack techniques like DFA [21] and IDFA [9]. FortiFix
also provides a vulnerability score for each memory location in a cipher implementation. The score
ranges from 0 to 1. A score close to one indicates that the memory location is considerably more
vulnerable to fault attacks compared to a location with a score that is close to zero. The vulnerability

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article . Publication date: July xxxx.



FortiFix: A Fault Attack Aware Compiler Framework for Crypto Implementations 3

score helps to automatically tune countermeasures based on the user’s requirement. Thus, a cipher
used in a security-critical application can be configured with higher levels of protection introduced
compared to a less security-critical application.

Figure 2 depicts the High-Level Overview of the compiler framework. The framework works by
first evaluating the block cipher algorithm to identify exploitable cipher operations. A fault in any of
these exploitable operations can leak bits of the cipher’s key. The Cipher Analysis module works at
the algorithmic level and uses a coloring scheme that captures the effect of the fault spread during
execution and then the threat in terms of key extraction. The output of this step is a list of vulnerable
cipher operations and needs to be done once for every cipher algorithm.

The subsequent steps in the framework operate on the implementation of the algorithm. A cipher
can be implemented in multiple ways, for example, optimized for performance or size. The vulnerable
operations can, therefore, be manifested in different ways in each implementation. Therefore, the
next step in the framework is to map the vulnerable cipher operations to the cipher’s software
implementation, using the Mapping Module. This is done using model checking and static analysis
tools. The output of this step is the mapped implementation with vulnerable regions are flagged. These
implementations are then passed to the compiler framework where all the exploitable intermediate
instructions are determined in the Fault Evaluation pass. A fault in any of these instructions can be
exploited to reveal bits of the cipher’s secret key. The success of the attack, however, varies based
on the program structure and the underlying microprocessor. The next pass, Fault Exploitability
Quantification, quantifies the exploitability of each vulnerable fault that can be inserted by evaluating
the program’s structure and fault propagation properties of the microprocessor. The final stage,
Countermeasure Addition, incorporates appropriate countermeasures into the implementation. The
amount of protection added by the compiler can be controlled by threshold set by the user. For
example, the user can set a lower threshold for more sensitive applications, therefore protecting
a larger portion of the vulnerable instructions in the implementation. On the other hand, a higher
threshold would cause a smaller portion of the vulnerable instructions protected.

Contributions. This paper discusses the end-to-end design of FortiFix highlighting the implementa-
tion aspects. The core idea of individual modules in FortiFix have been published before. Namely, the
Cipher Analysis module is published in [16], the Mapping Module in [14], and Fault Exploitability
Quantification Module in [13].

The contributions of this paper is summarized as follows:

∙ We provide the end-to-end design of FortiFix, that takes as input a source code of a block
cipher and uses compiler passes to generate an executable that is protected against fault attacks.
∙ Fault attack vulnerabilities not just depend on the cipher algorithm but also on the way it

is implemented, and the underlying processor. Thus, to demonstrate the functionality of
FortiFix, we use two AES-128 implementations and an implementation of CLEFIA-128. One
of the AES-128 implementations is optimized for memory constraint devices, while the other
uses large tables for look-ups. We consider three microprocessors, namely, ARM (32-bit),
RISC-V(32-bit), and TI’s MSP-430 (16-bit).
∙ The compiler framework strategically inserts countermeasures based on the user’s requirements.

A security-critical application can be compiled with more protection inserted, compared to a
less critical application. This allows users to trade-off between security and performance.
∙ The entire source code is made open-source and is available here: (https://bitbucket.org/

keerthikamal/fortifix/src/master/).

Structure of the Paper. The paper is organized as follows: Section 2 provides the necessary
background. Section 3 includes the recent works for automated fault vulnerability detection tools.

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article . Publication date: July xxxx.

https://bitbucket.org/keerthikamal/fortifix/src/master/
https://bitbucket.org/keerthikamal/fortifix/src/master/


4 Keerthi K and C. Rebeiro

Section 4 discusses FortiFix framework, expanding different module, and the evaluation results.
Section 5 includes the usage details and use-case of FortiFix. Section 6 concludes the paper.

2 BACKGROUND

2.1 Fault Attacks

In a fault attack, the attacker corrupts the output of an operation by injecting a fault during the cipher
execution [5]. The fault propagates through the cipher resulting in a faulty ciphertext. The attacker
uses this faulty ciphertext to retrieve bits of the secret key.

However, not all faulty ciphertexts are exploitable. The location of the faults induced is critical
to the success of a fault attack. For example, in AES, a fault induced before the 7th round [21] is
not easily exploitable by a differential fault attack, while a fault induced after the 8th round cannot
retrieve all bits of the secret key. The optimal locations are in the 8th round, where a fault induced
can be used to recover all bits of the secret key.

Extracting key bits by a fault injected in the 8th round of AES requires strategies such as the
Differential fault analysis (DFA). In DFA, the faulty ciphertext and its fault-free are used to build
equations in either one of the following forms:

S
(︀
x ⊕ k
)︀
⊕ S
(︀
x′ ⊕ k

)︀
=δ (1)

S −1 (︀y ⊕ k
)︀
⊕ S −1 (︀y′ ⊕ k

)︀
=δ (2)

In the above equations, S refers to the cipher’s S-box operation; x and y are respectively, the input
and output; and x′ and y′ are the input and output of the same S-box when a fault occurred. A typical
differential fault attack involves solving difference equations (either of the form (1) or (2)) to obtain
part of the cipher’s round key k.
Fault Models. Fault attacks are influenced by the type of disturbance induced. For example, certain
fault attacks have a strict requirement of a stuck-at-zero or stuck-at-one fault; while others require a
fixed number of bits to be affected. Moreover, most attacks require that the injected fault be transient,
meaning that it is momentarily applied. In this paper, we use a single random byte fault model and
can evaluate block ciphers for differential fault attacks.

2.2 Intermediate Representation (IR)

The LLVM compiler converts high-level implementations to machine code in different stages. The
front end pass includes lexical analysis, syntax analysis, and semantic analysis that converts the
high-level the implementation to Intermediate Representation (IR) instructions. Many of the modules
in FortiFix framework (Figure 2) are designed to work of these IR instructions. Each IR instruction
is in Static Single Assignment (SSA) form, consisting of an opcode, read and write operands.

Definition 2.1. [Static Single Assignment] Static Single Assignment (SSA), is a format for
program representation where the program variables are assigned exactly once, and every variable
is defined before its use.

Example 2.2. For example, an assignment x = x + 1 is converted to x1 = x0 + 1. The variable x is
renamed to x0 before x is assigned and the next value of x is replaced with x1.

The Back End Pass of the compiler includes code optimization and code generation to convert the
IR instructions to executable object codes.

3 RELATED WORK

Manually analyzing fault attack vulnerabilities is a tedious task that requires considerable expertise.
Naïvely inserting countermeasures could potentially result in huge overheads. A significant reason for

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article . Publication date: July xxxx.



FortiFix: A Fault Attack Aware Compiler Framework for Crypto Implementations 5

Table 1. Comparison with the state-of-the-art automatic fault attack evaluation tools.

Tools Input Type Output Cryptographic Target Automated
properties Processor Countermeasure Insertion

XFC [16] High-Level Exploitable Operations Differential Properties of S-Box ✗ ✗

ExpFault [20] High-Level Exploitable Operations Impossible Differential Properties ✗ ✗

AFA [23] High-Level Exploitable Operations Algebraic Properties of Cipher ✗ ✗

ExploreFault [10] High-Level Exploitable Operations Differential Properties ✗ ✗

DATAC [6] Assembly code Vulnerable instructions N/A Atmel AVR ✗

TADA [11] Assembly code Attack Details for last round N/A AVR ATmega ✗

ADFA [1] LLVM IR Vulnerable IR Instructions N/A ✗ ✗

Proposed - FortiFix Source Code Executables
with countermeasure inserted Differential Properties of S-Box

TI MSP 430 (16-bit)
✓ARM(32-bit)

RISC-V(32-bit)

these overheads is the fact that developers are unaware of exactly which parts of the implementation
are vulnerable to fault attacks. In a typical cipher implementation, out of the millions of faults that
can be injected, very few of them can be exploited. Identifying the vulnerable regions or nodes in
the implementation is non-trivial and very specific to the cipher algorithm and its implementation.
Further, the impact of an injected fault introduced at a specific location varies based on the underlying
processor architecture.

In the last few years, researchers have introduced fault attack vulnerability assessment tools that
can quickly and efficiently evaluate fault attack vulnerabilities. Most of the tools [23, 20, 16, 10]
work at the algorithmic level, taking a high-level representation of the cipher as input to identify the
vulnerable cipher-operations. While this approach, can evaluate vulnerabilities due to powerful fault
attacks like the DFA and IDFA, they have limited application because they work at the algorithm
level and cannot assess implementations. Each implementation has a unique set of vulnerabilities
and it becomes an onus of the user to bridge the gap between the high-level fault analysis and the
implementation.

An alternate direction of research is to build automatic vulnerability analysis tools that work directly
with the cipher’s implementation [6, 11, 1, 14] rather than its high-level representation. However,
properties such as differential and algebraic properties of a block cipher’s internal operations, like the
S-Boxes, can greatly influence the success of a fault attack. These internal features and characteristics
of the block cipher are not considered. Further, the output of these tools is binary, only denoting
whether an instruction is exploitable or not. The tools cannot quantify the exploitability.

Table 1 includes the state-of-the-art techniques to detect fault attack vulnerability from crypto
implementations. Unlike these works, FortiFix works on the implementation level, to find vulner-
abilities by considering cryptographic properties of the cipher such as differential and impossible
differential properties, and also quantifies the vulnerabilities based on the underlying processor
architectures. Further more the framework is incorporated as transformation passes at the LLVM
compiler that can be used to automatically insert optimized countermeasures and that are tuned based
on the security requirements. Finally, it generates executables with the countermeasures inserted.

4 FORTIFIX: FAULT ATTACK AWARE COMPILER

While there are a large number of locations in a program where faults can be injected during its
execution, only a small portion of these faults are exploitable. There are three requirements that a
fault should satisfy to be successfully exploited.
∙ Fault should impact vulnerable operations. The fault should target the small subset of vul-

nerable operations in the cipher. Faults injected elsewhere in the program cannot be exploited.
∙ Corrupt instruction output. Most fault attacks require that the fault modifies an instruction

output and not halt execution.
∙ Propagate to the output. The fault at the target instruction should propagate to the ciphertext.

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article . Publication date: July xxxx.



6 Keerthi K and C. Rebeiro

FortiFix considers all the three influencing aspects of fault attacks to detect and patch the exploitable
instructions. To analyze cipher implementations considering complex cryptographic properties,
program structure and the underlying hardware, we propose a two-phase compiler framework as
depicted in Figure 2. 1 Pre-Compiler Phase: that runs outside the LLVM compiler and identifies
the fault-exploitable operations from a block cipher algorithm, and then maps the exploitability to
different cipher implementations. 2 Compiler Phase: is incorporated as transformation passes
within the LLVM compiler that can find the exploitable instructions from the IR instructions of the
cipher, quantifies the exploitability based on the underlying hardware, incorporate countermeasures
to meet the security requirements, and finally generates executables that are protected from fault
attacks.

4.1 Pre-Compiler Phase

This phase works outside the compiler module and determines the exploitable operations at the
high-level representation of the block cipher. The Pre-Compiler Phase has two modules as depicted

in Figure 2. The P1 Cipher Analysis module finds the fault exploitable operations from a high-level

representation of the cipher and the P2 Mapping Module that maps the exploitable operations from
high-level representation to different implementations of the cipher.

P1: Cipher Analysis. Module P1 named Cipher Analysis finds the exploitable operations in the
cipher algorithm. It also provides the attack complexity and number of key bits that can be recovered
from differential fault attacks. The input to the module is the high-level representation of the cipher,

⟨ begin ⟩ ⟨ linear ⟩ ⟨ KeyWhitening ⟩
⟨𝒜1⟩ : {𝒫1 : XOR (P[1]),LKUP(1,KEY0)}
⟨𝒜2⟩ : {𝒫2 : XOR (P[2]),LKUP(2,KEY0)}

⟨ nonlinear ⟩⟨ SubByte ⟩
⟨𝒜3⟩ : {𝒜1 : LKUP(𝒜1,SBOX)}
⟨𝒜4⟩ : {𝒜2 : LKUP(𝒜2,SBOX)}

⟨ linear ⟩⟨ Swap ⟩
⟨𝒜5⟩ : {𝒜4}
⟨𝒜6⟩ : {𝒜3}

⟨ linear ⟩⟨ Diffusion ⟩
⟨𝒜7⟩ : {⟨𝒜5,𝒜6⟩ : XOR(MUL3(𝒜5,𝒜6}
⟨𝒜8⟩ : {⟨𝒜5,𝒜6⟩ : XOR(MUL3(𝒜6,𝒜5}

⟨ linear ⟩⟨ KeyAddition ⟩
⟨𝒜9⟩ : {𝒜7 : XOR (𝒜7,𝒜8),LKUP(1,KEY1)}
⟨𝒜10⟩ : {𝒜8 : XOR (𝒜7,𝒜8),LKUP(2,KEY1)}

⟨ end ⟩

Fig. 3. BCSL representation of the Toy Cipher

named BCSL [16]. The Block Cipher Specification Language (BCSL) captures various operations
performed by the cipher and the information flow of the plaintext through the algorithm. Figure 3
shows the BCSL representation of a toy cipher with two byte input, that performs a few operations
such as KeyAddition, SubByte, Swap and Diffusion, and the sub-operations are denoted from𝒜1,
𝒜2 · · ·𝒜10, and each sub-operations performs a byte operation in the cipher.

The module analyzes how the fault is propagated within the block cipher using a coloring scheme.
When a fault is induced into a block cipher byte, we assign a new color. We then trace the propagation
of the fault through the subsequent functions. Each time a colored byte propagates through a non-
linear function (e.g. SubByte), it changes to a new color. Every output of a linear function is colored
the same as the input if all its inputs have the same color. On the other hand, if the inputs have more
than one color, the output is assigned a new color.

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article . Publication date: July xxxx.



FortiFix: A Fault Attack Aware Compiler Framework for Crypto Implementations 7

Table 2. Output of P1: Cipher Analysis Module.

Cipher Round Number #Derived Keys Offline Complexity

AES

1-7 0 N/A
7-8 128 28

8-9 32 28

9-10 0 N/A

CLEFIA 13-14 32 28

14-17 32 24.76

Example 4.1. The figure below shows the coloring technique for the toy cipher given in Figure 3.
The fault is injected in before the SubByte operation, where a new color is assigned. When it
propagates through a non-linear function (e.g., SubByte), a new color is assigned, and for linear
function (e.g., MixColumn), the color remains the same. When an input of a function takes multiple
colors, the output is assigned with a new color irrespective of whether it’s linear or non-linear.

SubByte  Swap

Diffusion

KeyAddition

Fig. 4. Fault Propagation in KeyWhitening of the toy cipher given in Figure 4.

The coloring scheme captures the flow of information and relationships between intermediate
operations. Outputs of operations with the same color are linearly related, while outputs with different
colors are not related. We use the color scheme to build equations of the form (e.g., Equation 1
and 2). These equations can be solved to derive parts of the secret key. The number of such equations
formed is associated with a search space that represents the offline complexity of determining the
corresponding key parts.

Table 2 shows the output of the P1 module for two block ciphers. Each row shows the round
number of the cipher and the vulnerability to a single random fault temporally injected in any of
these round operations. For example, if a fault is injected in any operations between the round 7 and
8 of AES, then 128-bit key bits can be derived with an offline complexity of 28. On the other hand, a
fault injected between the 8-th and 9-th round of AES, can be used to derive 32-bits of the key with a
similar offline complexity. Faults injected in any other rounds are not exploitable by the Differential
Fault Analysis (DFA). More details about the Cipher Analysis module can be found in [16] and [18].

P2: Mapping Module. The implementations of block ciphers differ considerably depending on the
target application and the underlying platform. For instance, typical AES-128 implementations on
32-bit platforms use 5 T-tables, where the operations SubBytes, ShiftRows, and MixColumns are
merged and replaced with look-ups to four 1KByte tables. On 8-bit memory-constrained processors,
SubBytes is implemented using a single 256-byte look-up table. Thus, given a block cipher algorithm,
different programs would implement the algorithm in different ways. However all the implementations
are functionally equivalent, and the output of each round would be the same, irrespective of how
the round is implemented (for example merged operations using T-tables or 256-byte lookup-table
S-box). The module P2 uses this property to map the cipher algorithm to a given implementation.
Once mapped, the vulnerable cipher operations discovered in P1 can be identified in the cipher
implementation.

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article . Publication date: July xxxx.



8 Keerthi K and C. Rebeiro

The Mapping Module takes as input a C implementation of the cipher that is synthesized from a
BCSL cipher definition [19], where exploitable operations identified from P1 are annotated. This
implementation acts as a golden reference. It maps each operation in the golden reference to program
expressions (statements) in the given source code. The main challenge is that the cipher operations in
the source code can be merged, interchanged, or swapped compared to the golden reference. Hence,
the mapping module should be able to handle all possible mapping cases.

AddRoundKey

t0 =pt[0] ^ *rks++;

t1 =pt[1] ^ *rks++;

roundFunction

u0 = T0[(uint8_t)t0 ^ T1 (uint8_t)(t1 >> 8)];

AddRoundKey

t0 =u0 ^ *rks++;

t0 =u1 ^ *rks++;

u1 = T0[(uint8_t)t1 ^ T1 (uint8_t)(t0 >> 8)];

BCSL  T-Table Implementation

Fig. 5. Mapping from BCSL to Implementation

To effectively map the sub-operations to expressions in implementation, we use a model checking
tool named CBMC [7]. The model checker extracts the sub-operations from the golden reference and
program expressions from the source code, and checks the equivalence with the help of an underlying
SAT solver. The mapping module parses the BCSL and the implementation until the equivalence is
found. If an unmapped node is found in the golden reference, the module generates the information
flow graph within the BCSL and performs a reverse information flow analysis to determine the
merged and interchanged operations. The parser continues running until all the sub-operations in
BCSL are mapped to that of the implementation. The output of the Mapping Module is the mapped
implementation with exploitable expressions of the source code colored.

Example 4.2. Figure 5 shows the mapping of the toy cipher shown in Figure 3. The objective of
the mapping module is to map the sub-operations in the Block Cipher Specification (i.e.𝒜1,𝒜2,𝒜3,
· · · ,𝒜10) to program expressions (i.e. ℰ1, ℰ2, ℰ3, · · · , ℰ6). The mapping below shows the output of
the Mapping Module, for the toy cipher implementation given in Figure 5.

(𝒜1) ↔ (ℰ1)
(𝒜2) ↔ (ℰ2)

(𝒜3,𝒜5,𝒜7) ↔ (ℰ3)
(𝒜4,𝒜6,𝒜8) ↔ (ℰ4)

(𝒜9) ↔ (ℰ5)
(𝒜10) ↔ (ℰ6)

This mapping can be interpreted as follows: operations𝒜1 and𝒜2 in the golden reference (BCSL
definition) are realized by the program expression ℰ1 and ℰ2 respectively. The operations𝒜3,𝒜5,
𝒜7 are realized by the program expression ℰ3. This is an example where operations are merged.
Similarly, operations may be shuffled, or swapped within a round. The use of the model checker to
determine equivalence ensures these implementation variations can be efficiently handled.

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article . Publication date: July xxxx.



FortiFix: A Fault Attack Aware Compiler Framework for Crypto Implementations 9

...........

Fig. 6. Control Flow Graph for the toy cipher implementation given in Figure 5.

Table 3 shows the result of the mapping module for two different AES implementations and
CLEFIA. The interesting observation is that the number of expressions varies based on the imple-
mentation, and hence, the time for mapping also varies based on how the cipher is implemented.
More information about the Mapping Module can be found in [14].

Table 3. Output of the P1 : Mapping Module for two AES implementations, and CLEFIA.

# # No of Sub-operation # No of Expression Time in mins.
AES-128 (Look-Up) 640 780 59.33
AES-128 (T-Table) 196 98

CLEFIA 1184 1425 205.56

4.2 Compiler Phase

The front-end of compilers take the source code as input and generates Intermediate Representation
(IR), while the compiler’s back-end pass uses the IR to generate the executable. FortiFix uses trans-
formation passes that work on the IR to analyze and modify it. The advantage of using transformation
passes is that the IRs allow to work at a low level of abstraction. It also provides interoperability, as
the IR is hardware independent.

The input to the compiler is the source code with exploitable expressions colored. The FortiFix
compiler phase is depicted in Figure 2. The colored source code is parsed through the Front-End pass
of the compiler to generate the IR instructions. The IR is then parsed through three transformation

passes of FortiFix, C1 Fault Evaluation, finds the fault exploitable instructions in the IR instructions,

C2 Fault Exploitable Quantification, quantifies the exploitability based on the underlying hardware

C3 Countermeasure Addition, adds the countermeasure based on the user’s security requirements,
by instrumenting code at the IR level.

C1: Fault Evaluation. The input to the C1 pass is the IR instructions where the initial set of exploitable
expressions are colored by the pre-compiler stage. The C1 pass converts the IR instructions to a
Customized Flow Graph (CFG), where each instruction in the IR forms a vertex in the graph. An edge
from vertex ℐi to ℐ j is present if there is a control flow such that instruction ℐ j executes immediately

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article . Publication date: July xxxx.



10 Keerthi K and C. Rebeiro

after instruction ℐi. Figure 6 depicts the IR instructions and the corresponding CFG generated by the
C1 pass of the FortiFix compiler for the toy cipher implementation given in Figure 5.

A corrupted output of a colored IR instruction can be used by an attacker to glean bits of the
secret key. For a given IR instruction, C1 identifies all predecessor instructions that can influence the
colored IR. To identify the exploitable instructions, C1 performs a reverse data flow analysis on the
control flow graph to determine the list of predecessor nodes that can influence the exploitable IR
node. The output is a list of all exploitable IR instructions. A fault injected in any of these exploitable
instructions could result in an incorrect output, which in turn can be successfully exploited in a fault
attack.

Example 4.3. To corrupt the output of the node I63, the fault can be injected in the I63 node
or propagated from the predecessor node. The C2 pass gives the list of exploitable nodes. i.e.,(︀
I1 · · · I31, I41 · · · I49, I57 · · · I63

)︀
. A fault induced in any of these instruction can corrupt the output of

the node I63. More details about the Fault Evaluation module can be obtained from [14].

Table 4. Statistics of step C1: Fault Evaluation for 2 AES implementations, and CLEFIA.

#
# IR Instruction

in the CFG
% of exploitable

instructions.
Time

in secs.
AES-128 (Look-Up) 7206 6.56 38.2
AES-128 (T-Table) 4299 3.71 15.5

CLEFIA 1026 6.54 105.5

Table 4 shows the results of the C1 pass of the compiler. The interesting observation is that, the
percentage of exploitable instructions varies based on how the cipher is implemented and not just
based on the algorithm. A fault in any of these exploitable nodes can be used to mount a fault attack.
Comparing different implementations of AES-128, the T-Table implementation has the lesser number
of exploitable instructions.

C2: Fault Exploitable Quantification. The input to the C2 pass is the IR instructions where all
the exploitable IR instructions are colored. However, the color does not signify the scale of the
exploitability. The C2 pass quantifies the exploitability based on the underlying hardware. The C2
pass takes an additional input called the Hardware Fault Probability, which is the probability of
fault-induced instruction corruption. To study the effect of fault-corrupting instruction on different
hardware, we have analyzed three different processor, namely, TI-MSP430(16-bit), RISCV(32-bit),
and ARM(32-bit).
Hardware Fault Probability: When a single fault is transiently injected during an instruction
execution, it can manifest by either altering, leaving unaltered the instruction output, or terminating
the program. A fault due to the altered instruction output may propagate, resulting in a faulty
ciphertext. We classify the fault manifestations into four classes:

F1. Fault is activated: The induced fault alters the instruction execution, resulting in an incorrect
instruction output.

F2. Fault is not activated: The induced fault alters the instruction execution but does not change
the instruction output.

F3&F4. Program is terminated: The induced fault leads to an illegal operation, causing the program
to terminate.

The faults in set F2, F3, and F4 cannot induce a successful fault attack, as the outcomes does not
provide the faulty ciphertext that is necessary to carry out the attacks. When an injected fault changes

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article . Publication date: July xxxx.



FortiFix: A Fault Attack Aware Compiler Framework for Crypto Implementations 11

Arithmetic Branch Logic Overall
Instruction Types - TI MSP430(16-bit)

0.0

0.2

0.4

0.6

0.8

1.0

Ha
rd

wa
re

 F
au

lt 
Pr

ob
ab

ilit
y F1:Faulty Output

F2: Same Output
F3: Program Crash
F4: Invalid Opcode

(a)

Arithmetic Branch Logic Overall
Instruction Types - ARM(32-bit)

0.0

0.2

0.4

0.6

0.8

1.0

Ha
rd
wa

re
 F
au
lt 
Pr
ob
ab
ilit
y F1:Faulty Output

F2: Same Output
F3: Program Crash
F4: Invalid Opcode

(b)

Arithmetic Branch Logic Overall
Instruction Types - RISC-V(32-bit)

0.0

0.2

0.4

0.6

0.8

1.0

Ha
rd
wa

re
 F
au
lt 
Pr
ob
ab
ilit
y F1:Faulty Output

F2: Same Output
F3: Program Crash
F4: Invalid Opcode

(c)
Fig. 7. Outcome of fault injection on (a) TI-MSP430(16-bit) , (b)ARM (32-bit) and (c) RISC-V(32-bit).

Direct Immediate Register/Register RegisterIndirect
Addressing Modes

0.0

0.2

0.4

0.6

0.8

1.0

Ha
rd

wa
re

 F
au

lt 
Pr

ob
ab

ilit
y

ARM(32-bit)
TI MSP-430(16-bit)

RISC-V(32-bit)

(a)

0 1 2 3
Number of Operands

0.0

0.2

0.4

0.6

0.8

1.0

Ha
rd

wa
re

 F
au

lt 
Pr

ob
ab

ilit
y

ARM(32-bit)
TI MSP-430(16-bit)

RISC-V(32-bit)

(b)
Fig. 8. (a) Outcome of fault injection on different addressing modes , (b) Outcome of fault injection on
different number of operands).

bits in an opcode, it can result in a valid or invalid instruction. An invalid instruction opcode results
in program termination (F4), while a valid instruction can have any of the remaining three (i.e. F1,
F2, or F3) outcomes. The probability of these outcomes depends not just on the type of instruction
but also on the instruction encoding. They are thus unique to each Instruction Set Architecture. To
understand these probabilities, we consider three microprocessors, namely, TI’s MSP-430 (16-bit),
ARM (32-bit), and RISCV (32-bit), to identify the reliance of fault injection on the underlying
architecture. For each of these microprocessors, we generate random programs 1, cross-compile
and execute the binary multiple times in a simulator. In each execution, faults are injected in an
instruction using simulation tools, such as by modifying the instruction memory and then observing
the instruction output. The result of the fault falls in one of the four classes i.e. F1, F2, F3, or F4.
Figure 7 shows the probability of producing incorrect output for different instruction types on three
microprocessors.

The C2 pass takes the above hardware fault probability as input and performs the quantification
analysis on the IR. The output of an instruction in the program can be corrupted either by a fault
injected in that instruction or a fault injected in a previous instruction that propagates to the given
instruction. The latter depends on the program structure. Fault propagation can be done in two
ways. The first is through registers, where the output of one instruction is used as an input to
another. Alternatively, faults can propagate through memory operations. For instance, by a store
of faulted data to memory, followed by a subsequent load from the same address. We determine
the fault propagation probability by dividing the instructions into three different classes (1) fault in
data-dependent instructions, (2) fault in control-dependent instructions, and (3) fault in the memory-
dependent instructions. The individual instructions level probability is taken and propagated through
the data-dependent paths to the ciphertext, and the maximum probability at each node considering
the three cases is taken as the success score of the node.
1Csmith(https://embed.cs.utah.edu/csmith/)

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article . Publication date: July xxxx.

https://embed.cs.utah.edu/csmith/)


12 Keerthi K and C. Rebeiro

I 1
 

I 2
 

I 3
 

I 4
 

I 5
 

I 6
 

I 7
 

I 8
 

I 9
 

I 1
0 

I 1
1 

I 1
2 

I 1
3 

I 1
4 

I 1
5 

I 1
6 

I 1
7 

I 1
8 

I 1
9 

I 2
0 

I 2
1 

I 2
2 

I 2
3 

I 2
4 

I 2
5 

I 2
6 

I 2
7 

I 2
8 

I 2
9 

I 3
0 

I 3
1 

I 3
2 

I 3
3 

I 3
4 

I 3
5 

I 3
6 

I 3
7 

I 3
8 

I 3
9 

I 4
0 

I 4
1 

I 4
2 

I 4
3 

I 4
4 

I 4
5 

I 4
6 

I 4
7 

I 4
8 

I 4
9 

I 5
0 

I 5
1 

I 5
2 

I 5
3 

I 5
4 

I 5
5 

I 5
6 

I 5
7 

I 5
8 

I 5
9 

I 6
0 

I 6
1 

I 6
2 

I 6
3 

Nodes in the Control Flow Graph

0.0

0.1

0.2

0.3

0.4

0.5

Fa
ul
t P

ro
pa

ga
tio

n 
Pr
ob

ab
ilit

y

I1 ARM(32-bit) :I1 
RISC-V(32bit):I1 

Example 4.4. Figure above shows the fault propagation probability for the toy cipher implemen-
tation given in Figure 5. Figure shows the how the fault propagation probability changes on two
different architecture when the fault is induced on instruction I1

93 94 95 96 97 98 99 100
Percentage(%) of Instructions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s
Sc

or
e

AES-128(Lookup)
AES-128(T-Table)
CLEFIA-128

(a) ARM(32-bit)

93 94 95 96 97 98 99 100
Percentage(%) of Instructions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc
es
s
Sc
or
e

AES-128(Lookup)
AES-128(T-Table)
CLEFIA-128

(b) MSP430(16-bit)

93 94 95 96 97 98 99 100
Percentage(%) of Instructions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc
es
s
Sc
or
e

AES-128(Lookup)
AES-128(T-Table)
CLEFIA-128

(c) RISC-V(32-bit)

Fig. 9. SuccessScore of three different ciphers across three different architectures.

During our analysis, we observed that the opcode encoding in the microprocessor plays an
important role in the vulnerability. Figure 7 shows the probability of producing incorrect output for
different instruction classes on three microprocessors. This brings out interesting observations, such
as TI MSP-430 is most vulnerable to fault attacks compared to other processors evaluated. This is
because TI MSP-430 has the highest instruction density. Thus, the probability of program termination
due to fault in the opcode is the lowest. Among the 32-bit processors considered, ARM is more
vulnerable to fault injection than RISC-V, as RISC-V has a considerably large number of unused
opcodes, hence low density and a higher chance of program termination due to fault. Figure 9(a)
shows the percentage of exploitable instruction of AES-128 (LookUp) table based implementation
along with the success score on three different hardware. The graph shows that the success score
varies based on the underlying hardware. Figure 8 shows how the hardware fault probability vary
based on the addressing mode and number of operands. The probability is higher for immediate
addressing mode across the architecture and the probability increases as the number of operands
increases. Figure 9 shows the success score of three ciphers on TI-MSP430(16-bit). AES-128 (T-
table) based implementation is the least vulnerable, and the Look-Up table based implementation is
most vulnerable to fault attack.
C3: Countermeasure Addition. Incorporating fault attack countermeasures is expensive. It can
increase run time overheads by over 100% and memory requirements by over 800%. These overheads
are unacceptable for several applications, especially where time and resources are critical. We
incorporate the countermeasures based on the security requirement. For instance, a block cipher
used in critical infrastructure would require much more secure implementations compared to an
application in a consumer device. Thus, for such applications, designers typically would want to
prioritize security in lieu of performance. Such trade-offs would be less acceptable for the consumer
device, especially in a resource-constraint device, where each byte and each clock cycle is valuable.

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article . Publication date: July xxxx.



FortiFix: A Fault Attack Aware Compiler Framework for Crypto Implementations 13

AES(Look-Up) AES(T-Table) CLEFIA
Cipher Implementations

0

2000

4000

6000

8000

10000

12000
Co

de
 S

ize

Without countermeasure
FortiFix(Uin=0.8) 

FortiFix(Uin=0.4) 
Naive countermeasure

(a) Code Size

AES(Look-Up) AES(T-Table) CLEFIA
Cipher Implementation

103

104

105

106

 C
lo

ck
 C

yc
le

s (
in

 lo
gs

ca
le

) Without countermeasure
FortiFix(Uin=0.8) 

FortiFix(Uin=0.4) 
Naive countermeasure

(b) Execution Time

Fig. 10. Comparison of unprotected implementations, naively protected implementations with FortiFix
based automatic protection.

The input to the C3 pass is the IR instructions with all the exploitable instructions, along with
the success score of corrupting the output of the program. FortiFix introduced redundancy-based
countermeasure at the IR level, where each exploitable instruction is duplicated and then performs a
check at the end of each instruction to determine whether the output of the instruction is corrupted or
not.

Example 4.5. Assume that the following IR instruction is found to be exploitable. The instruction
store takes the value from location pointed by %67 and stores the result in a variable T1[0].

%74 = getelementptr inbounds [256 x i32], [256 x i32]* @T1, i64 0, i64 %shr12
store i8 %67, i8* %74

Redundancy countermeasure duplicates this exploitable instruction. This requires (1) duplication
of program variables accessed by the instruction. For example, the two-dimensional array T0[256]
given in the instruction is duplicated in T1[256]; (2) the duplicated instructions are checked for equal-
ity with the actual instruction to determine the occurrence of a fault. These redundant instructions
are automatically inserted by the compiler. In the instruction snippet shown below, the instructions in
violet are the replicated operations, while the instructions in blue perform the comparison between
the original and replicated operations. The executable generated would thus be protected against the
differential fault attacks.

%74 = getelementptr inbounds [256 x i32], [256 x i32]* @T1, i64 0, i64 %shr12
store i8 %67, i8* %74
%75 = getelementptr inbounds [256 x i32], [256 x i32]* @T01,i64 0,i64 %shr121
store i8 %67, i8* %75
%76 = getelementptr inbounds [256 x i32], [256 x i32]* @T0,i64 0,i64 %shr12
%77 = load i8, i8* %76
%78 = zext i8 %77 to i32
%79 = getelementptr inbounds [256 x i32], [256 x i32]* @T01,i64 0,i64 %shr121
%80 = load i8, i8* %79
%81 = zext i8 %80 to i32
%82 = icmp ne i32 %78, %81
br i1 %82, label %83, label %87

; <label>:83:
call void @exit(i32 0)
br label %87

; <label>:87:
· · ·

The BackEnd Pass of the compiler converts the instrumented IR instructions to executable where
countermeasures are already incorporated. Figure 10 shows the results of C3 stage the compiler for
two different implementations of AES and CLEFIA. Compared to naively incorporating fault attack

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article . Publication date: July xxxx.



14 Keerthi K and C. Rebeiro

countermeasures, the quantification based on the underlying microprocessor reduces overheads by
50%-120%, which can be further reduced based on the user’s security requirements.

5 IMPLEMENTATION AND USAGE CASE OF FORTIFIX
Our framework FortiFix is open source and is publicly available2. The FortiFix framework has two
phases: the pre-compiler phase, implemented using the CBMC model checking tool and python
scripts; the compiler phase is developed using the LLVM Compiler. The configuration of the tools
used for the development of FortiFix framework is as follows:
Configuration :

1 CBMC --version 5.6 or greater
2 Python --version 2.7
3 LLVM -- version 7.0.0svn
4 Clang -- version 7.0.0

5.1 Execution Steps

Before using the framework, the underlying architecture of the target processor and the user’s security
requirements need to be mentioned in the configure.py file.

1 $ Configure the architecture , user inputs etc. in configure.py
2 $ python FortiFix.py

The FortiFix.py framework will take a few minutes to complete the executions and generate a set
of intermediate outputs at each step. The following section includes details about each step in the
framework and the input/output format at each step.

5.2 Input and Output Interpretation at each step of FortiFix
The input/output interpretation of the pre-compiler and compiler modules of FortiFix are as follows:

P1 Cipher Analysis: The input to the module is the BCS representation as shown in Figure 11(b).
Each line shows a byte operation in the function, along with the linear and nonlinear functions. The
module performs a comprehensive analysis and gives the list of exploitable operations as shown in
Figure 11(a). For example, if we inject a byte fault on the first byte of function F28, then 128 bits of
the secret key can be determined from the correct and fault ciphertext pairs. Hence, the operation
F28[1] is marked exploitable.

P2 Mapping Module: The input to the module is the source code (refer Figure 12(a)) and the
BCS (refer Figure 11(b)) of the given crypto algorithm. The module maps the operations in BCS
to expressions in source code using the CBMC model-checking tool. Figure 12(a) is the T-Table
implementation of AES, and (b) shows the result of the mapping module for the first round of AES,
where operations are mapped to expression. For example, G32, the operation in line 32 of BCS
representation, maps to E734, the expression in line 734 of the implementation.

C Compiler Phase: Once the exploitable operations are mapped, the next phase is the compiler
module. The Front End Pass generates the IR from the source code, where exploitable instructions
are marked. Figure 13 shows the output of different stages of the compiler module. The C1 module
finds all the exploitable nodes from the CFG. The C2 module quantifies the vulnerability and gives
the exploitability score for each node based on the architecture configured. The C3 module adds

2FortiFix (https://bitbucket.org/keerthikamal/fortifix/src/master/)

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article . Publication date: July xxxx.

https://bitbucket.org/keerthikamal/fortifix/src/master/)


FortiFix: A Fault Attack Aware Compiler Framework for Crypto Implementations 15

( a ) ( b )

Fig. 11. The cipher Analysis Phase takes BCS as input and determine the exploitable operations from
BCS.

( a ) ( b )

Fig. 12. The mapping module takes the crypto implementation and output of P1 to determine all possible
mapping. Operation in BCS (G32) maps to expression (E734) in the implementation.

the countermeasure based on the requirements from the user inputs configured. For example, once

CFG C1 C2 C3

Fig. 13. Output of different stages of the compiler.

the CFG is generated from the intermediate representation (IR) as shown in Figure 13. C1 takes

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article . Publication date: July xxxx.



16 Keerthi K and C. Rebeiro

CFG and IR as input and outputs lists of exploitable nodes from the CFG. In Figure 13, the output
12:SubByte indicates that node 12 of the SubByte function is marked as exploitable by the C1 pass.
The input to C2 is the modified IR and the list of exploitable nodes. C2 outputs the vulnerability
score for each node. For example, load:16:SubByte:0.37 indicates that node 16 of SubByte has
a vulnerability score of 0.37. Once the vulnerability score of all the nodes is determined, then the C3
pass of the compiler adds countermeasures based on the user security requirements configured.

5.3 Execution Time and Coverage

Table 5 shows the execution time of the FortiFix framework for two AES implementations and a
CLEFIA implementation. It also shows the security coverage the framework provides after inserting
countermeasures for security requirements 0.4 and 0.8. Notice that the security coverage increases
with the user’s security input.

Table 5. Execution Time and Security Coverage that FortiFix provides for two AES implementations and
an implementation of CLEFIA.

# Time in mins. Security Requirement Coverage (%)

AES-128 (Look-Up) 59.96 0.4 79
0.8 84

AES-128 (T-Table) 98.25 0.4 86
0.8 90

CLEFIA 207.56 0.4 81
0.8 85

6 CONCLUSION

Our compiler framework FortiFix, can automatically determine the exploitable instructions in
the cipher implementations, quantify and patch the vulnerability to generate fault-attack resistant
executables. We show the exploitability and the fault propagation probability depends on the cipher
algorithm, its implementation, as well as the Instruction Set Architecture (ISA) of the processor.
Our evaluation of three cipher implementations on three hardware platforms brings out interesting
observations. For instance, TI MSP 430 (16-bit) is the most vulnerable to fault attacks. Comparing
the 32-bit RISC processors, ARM is more vulnerable to fault injection than RISC-V. Comparing
different implementations of AES, the T-table implementation is the most secure against fault attacks.
The quantification that the framework provides can be used to strategically used to choose the
right countermeasure in block cipher implementations to meet the security requirements. Currently,
FortiFix cannot determine the vulnerability on an FPGA as ciphers implemented in RTL. Providing
such a framework for FPGAs would be an interesting further direction.

REFERENCES

[1] Giovanni Agosta et al. “Differential Fault Analysis for Block Ciphers: an Automated Con-
servative Analysis”. In: Proceedings of the 7th International Conference on Security of
Information and Networks, Glasgow, Scotland, UK, September 9-11, 2014. 2014, p. 137. doi:
10.1145/2659651.2659709. url: https://doi.org/10.1145/2659651.2659709.

[2] S. Ali and D. Mukhopadhyay. “Improved Differential Fault Analysis of CLEFIA”. In: FDTC.
2013, pp. 60–70.

[3] Nasour Bagheri, Reza Ebrahimpour, and Navid Ghaedi. “New differential fault analysis on
PRESENT”. In: EURASIP J. Adv. Signal Process. 2013 (2013), p. 145. doi: 10.1186/1687-
6180-2013-145. url: https://doi.org/10.1186/1687-6180-2013-145.

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article . Publication date: July xxxx.

https://doi.org/10.1145/2659651.2659709
https://doi.org/10.1145/2659651.2659709
https://doi.org/10.1186/1687-6180-2013-145
https://doi.org/10.1186/1687-6180-2013-145
https://doi.org/10.1186/1687-6180-2013-145


FortiFix: A Fault Attack Aware Compiler Framework for Crypto Implementations 17

[4] Eli Biham and Adi Shamir. “Differential Fault Analysis of Secret Key Cryptosystems”. In:
Advances in Cryptology - CRYPTO ’97, 17th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 1997, Proceedings. 1997, pp. 513–525. doi:
10.1007/BFb0052259. url: https://doi.org/10.1007/BFb0052259.

[5] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. “On the Importance of Check-
ing Cryptographic Protocols for Faults (Extended Abstract)”. In: Advances in Cryptology
- EUROCRYPT ’97, International Conference on the Theory and Application of Crypto-
graphic Techniques, Konstanz, Germany, May 11-15, 1997, Proceeding. 1997, pp. 37–51. doi:
10.1007/3-540-69053-0\_4. url: https://doi.org/10.1007/3-540-69053-0%5C_4.

[6] Jakub Breier, Xiaolu Hou, and Yang Liu. “Fault Attacks Made Easy: Differential Fault
Analysis Automation on Assembly Code”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst.
2018.2 (2018), pp. 96–122. doi: 10.13154/tches.v2018.i2.96-122. url: https://doi.org/10.
13154/tches.v2018.i2.96-122.

[7] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. “A Tool for Checking ANSI-C
Programs”. In: 10th International Conference, TACAS 2004, Held as Part of the Joint ETAPS
2004, Barcelona, Spain, March 29 - April 2, 2004, Proceedings. 2004, pp. 168–176.

[8] Ware D Courtois NT Jackson K. “Fault-Algebraic Attacks on Inner Rounds of DES”. In:
e-Smart ’10 Proceedings: The Future of Digital Security Technologies. 2010.

[9] Patrick Derbez, Pierre-Alain Fouque, and Delphine Leresteux. “Meet-in-the-Middle and
Impossible Differential Fault Analysis on AES”. In: Cryptographic Hardware and Embedded
Systems - CHES 2011 - 13th International Workshop, Nara, Japan, September 28 - October 1,
2011. Proceedings. 2011, pp. 274–291.

[10] Hao Guo et al. “ExploreFault: Identifying Exploitable Fault Models in Block Ciphers with
Reinforcement Learning”. In: 60th ACM/IEEE Design Automation Conference, DAC 2023,
San Francisco, CA, USA, July 9-13, 2023. IEEE, 2023, pp. 1–6. doi: 10.1109/DAC56929.
2023.10247953. url: https://doi.org/10.1109/DAC56929.2023.10247953.

[11] Xiaolu Hou et al. “Fully Automated Differential Fault Analysis on Software Implementations
of Cryptographic Algorithms”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 3 (2019), pp. 1–
29. doi: 10.13154/tches.v2019.i3.1-29. url: https://doi.org/10.13154/tches.v2019.i3.1-29.

[12] Yuming Huo et al. “Improved Differential Fault Attack on the Block Cipher SPECK”. In: 2015
Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC 2015, Saint Malo, France,
September 13, 2015. Ed. by Naofumi Homma and Victor Lomné. IEEE Computer Society,
2015, pp. 28–34. doi: 10.1109/FDTC.2015.15. url: https://doi.org/10.1109/FDTC.2015.15.

[13] Keerthi K and Chester Rebeiro. “FaultMeter: Quantitative Fault Attack Assessment of Block
Cipher Software”. In: IACR Transactions on Cryptographic Hardware and Embedded Systems
2023.2 (Mar. 2023), pp. 212–240. doi: 10 . 46586 / tches . v2023 . i2 . 212 - 240. url: https :
//tches.iacr.org/index.php/TCHES/article/view/10282.

[14] Keerthi K. et al. “FEDS: Comprehensive Fault Attack Exploitability Detection for Software
Implementations of Block Ciphers”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020.2
(2020), pp. 272–299. doi: 10.13154/tches.v2020.i2.272-299. url: https://doi.org/10.13154/
tches.v2020.i2.272-299.

[15] Dusko Karaklajic, Jörn-Marc Schmidt, and Ingrid Verbauwhede. “Hardware Designer’s Guide
to Fault Attacks”. In: IEEE Trans. Very Large Scale Integr. Syst. 21.12 (2013), pp. 2295–2306.
doi: 10.1109/TVLSI.2012.2231707. url: https://doi.org/10.1109/TVLSI.2012.2231707.

[16] Punit Khanna, Chester Rebeiro, and Aritra Hazra. “XFC: A Framework for eXploitable Fault
Characterization in Block Ciphers”. In: Proceedings of the 54th Annual Design Automation
Conference, DAC 2017, Austin, TX, USA, June 18-22, 2017. 2017, 8:1–8:6. doi: 10.1145/
3061639.3062340. url: https://doi.org/10.1145/3061639.3062340.

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article . Publication date: July xxxx.

https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/3-540-69053-0\_4
https://doi.org/10.1007/3-540-69053-0%5C_4
https://doi.org/10.13154/tches.v2018.i2.96-122
https://doi.org/10.13154/tches.v2018.i2.96-122
https://doi.org/10.13154/tches.v2018.i2.96-122
https://doi.org/10.1109/DAC56929.2023.10247953
https://doi.org/10.1109/DAC56929.2023.10247953
https://doi.org/10.1109/DAC56929.2023.10247953
https://doi.org/10.13154/tches.v2019.i3.1-29
https://doi.org/10.13154/tches.v2019.i3.1-29
https://doi.org/10.1109/FDTC.2015.15
https://doi.org/10.1109/FDTC.2015.15
https://doi.org/10.46586/tches.v2023.i2.212-240
https://tches.iacr.org/index.php/TCHES/article/view/10282
https://tches.iacr.org/index.php/TCHES/article/view/10282
https://doi.org/10.13154/tches.v2020.i2.272-299
https://doi.org/10.13154/tches.v2020.i2.272-299
https://doi.org/10.13154/tches.v2020.i2.272-299
https://doi.org/10.1109/TVLSI.2012.2231707
https://doi.org/10.1109/TVLSI.2012.2231707
https://doi.org/10.1145/3061639.3062340
https://doi.org/10.1145/3061639.3062340
https://doi.org/10.1145/3061639.3062340


18 Keerthi K and C. Rebeiro

[17] Andrew Kwong et al. “RAMBleed: Reading Bits in Memory Without Accessing Them”.
In: 2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA,
May 18-21, 2020. IEEE, 2020, pp. 695–711. doi: 10 . 1109 /SP40000 . 2020 . 00020. url:
https://doi.org/10.1109/SP40000.2020.00020.

[18] Indrani Roy et al. “FaultDroid: An Algorithmic Approach for Fault-Induced Information
Leakage Analysis”. In: ACM Trans. Design Autom. Electr. Syst. 26.1 (2021), 2:1–2:27. doi:
10.1145/3410336. url: https://doi.org/10.1145/3410336.

[19] Indrani Roy et al. “SAFARI: Automatic Synthesis of Fault-Attack Resistant Block Cipher
Implementations”. In: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39.4 (2020),
pp. 752–765. doi: 10.1109/TCAD.2019.2897629. url: https://doi.org/10.1109/TCAD.2019.
2897629.

[20] Sayandeep Saha, Debdeep Mukhopadhyay, and Pallab Dasgupta. “ExpFault: An Automated
Framework for Exploitable Fault Characterization in Block Ciphers”. In: IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2018.2 (2018), pp. 242–276. doi: 10.13154/tches.v2018.i2.242-276. url:
https://doi.org/10.13154/tches.v2018.i2.242-276.

[21] Michael Tunstall, Debdeep Mukhopadhyay, and Subidh Ali. “Differential Fault Analysis of
the Advanced Encryption Standard Using a Single Fault”. In: Information Security Theory
and Practice. Security and Privacy of Mobile Devices in Wireless Communication - 5th IFIP
WG 11.2 International Workshop, WISTP 2011, Heraklion, Crete, Greece, June 1-3, 2011.
Proceedings. 2011, pp. 224–233. doi: 10.1007/978-3-642-21040-2\_15.

[22] Harshal Tupsamudre, Shikha Bisht, and Debdeep Mukhopadhyay. “Differential Fault Analysis
on the Families of SIMON and SPECK Ciphers”. In: 2014 Workshop on Fault Diagnosis and
Tolerance in Cryptography, FDTC 2014, Busan, South Korea, September 23, 2014. Ed. by
Assia Tria and Dooho Choi. IEEE Computer Society, 2014, pp. 40–48. doi: 10.1109/FDTC.
2014.14. url: https://doi.org/10.1109/FDTC.2014.14.

[23] Fan Zhang et al. “A Framework for the Analysis and Evaluation of Algebraic Fault Attacks on
Lightweight Block Ciphers”. In: IEEE Trans. Information Forensics and Security 11.5 (2016),
pp. 1039–1054. doi: 10.1109/TIFS.2016.2516905. url: https://doi.org/10.1109/TIFS.2016.
2516905.

[24] Fan Zhang et al. “Persistent Fault Attack in Practice”. In: IACR Trans. Cryptogr. Hardw.
Embed. Syst. 2020.2 (2020), pp. 172–195. doi: 10.13154 / tches.v2020. i2.172- 195. url:
https://doi.org/10.13154/tches.v2020.i2.172-195.

ACM Trans. Des. Autom. Electron. Syst., Vol. 1, No. 1, Article . Publication date: July xxxx.

https://doi.org/10.1109/SP40000.2020.00020
https://doi.org/10.1109/SP40000.2020.00020
https://doi.org/10.1145/3410336
https://doi.org/10.1145/3410336
https://doi.org/10.1109/TCAD.2019.2897629
https://doi.org/10.1109/TCAD.2019.2897629
https://doi.org/10.1109/TCAD.2019.2897629
https://doi.org/10.13154/tches.v2018.i2.242-276
https://doi.org/10.13154/tches.v2018.i2.242-276
https://doi.org/10.1007/978-3-642-21040-2\_15
https://doi.org/10.1109/FDTC.2014.14
https://doi.org/10.1109/FDTC.2014.14
https://doi.org/10.1109/FDTC.2014.14
https://doi.org/10.1109/TIFS.2016.2516905
https://doi.org/10.1109/TIFS.2016.2516905
https://doi.org/10.1109/TIFS.2016.2516905
https://doi.org/10.13154/tches.v2020.i2.172-195
https://doi.org/10.13154/tches.v2020.i2.172-195

	Abstract
	1 Introduction
	2 Background
	2.1 Fault Attacks
	2.2 Intermediate Representation (IR)

	3 Related Work
	4 FortiFix: Fault Attack Aware Compiler 
	4.1 Pre-Compiler Phase
	4.2 Compiler Phase

	5 Implementation and Usage Case of FortiFix
	5.1 Execution Steps
	5.2 Input and Output Interpretation at each step of FortiFix
	5.3 Execution Time and Coverage

	6 Conclusion

